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bstract

In this paper a fractal permeability model for the gas diffusion layer (GDL) of PEM fuel cells (PEMFCs) is presented. The model accounts for
he actual microstructures of the GDL in terms of two fractal dimensions, one relating the size of the capillary flow pathways to their population
nd the other describing the tortuosity of the capillary pathways. In addition, the gas molecule effect is considered by using the Adzumi equation.
he fractal permeability model is found to be a function of the tortuosity fractal dimension, pore area fractal dimension, sizes of pore and the
ffective porosity of porous medium without any empirical constants. mercury-intrusion porosimetry was used to measure the microstructures of
he GDL. Based on scanning electron microscope (SEM) images, two fractal dimensions are determined by the box-counting method. To verify

he validity of the model, the predicted permeability data of the present fractal model were compared with the experimental data supplied by Toray
nc. It is found that the permeability prediction of the model was in accordance with experimental data. This verifies the validity of the present
ractal permeability model for the GDL.

2006 Elsevier B.V. All rights reserved.
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. Introduction

PEM fuel cells (PEMFCs) have a high efficiency, power
ensity, reliability and a quick startup capability. They could
ave a wider use in spaceflight and military applications with a
uge market potential for fuel cells electric utilities, automotive
ransportation and in portable equipment. In the simulations of
EMFCs, supposing that porous media including gas diffusion

ayer (GDL), catalyst layer and membrane are always homoge-
eous, diffusion, momentum and energy equations are solved
ogether with macroscopic transport properties such as perme-
bility, effective thermal, electronic conductivity and effective
iffusion coefficient. Firstly, this assumption is wrong. In real-
ty, the GDL, catalyst layer and the membrane are anisotropic.

econdly, it relates to the transport mechanisms of PEMFCs
ithout consideration of the micro-geometry and connectivity
f the chaotic pore spaces of actual porous media through which

∗ Corresponding author. Tel.: +86 131 1439 5196; fax: +86 27 8785 9223.
E-mail address: jsxiao@mail.whut.edu.cn (J. Xiao).
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he transport takes place, and such simulations give limited direc-
ion for the correct design of PEMFCs. Since porous media are
omplex, there is no good way to represent their microstructures
xactly. Thompson et al. [1] confirmed that the interspaces in real
orous media have a fractal character through scanning electron
icroscope (SEM). This work tries to apply fractal theory to
EMFC modeling, and develops a fractal model of permeabil-

ty, one of the transport characteristics of the GDL. This model
onsiders the microstructures of porous media, and will help us
etter understand the heat and mass transport mechanisms in
his porous layer of the PEMFC.

. Research methods and fractal research of
ermeability

In this section, conventional research methods and fractal
esearch progress on permeability are introduced.
Research methods of the permeability included experimen-
al measurement, analytical solution and numerical simulation.
raditionally, determination of the permeability tensor is best
ccomplished through experimental measurements since many
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nd various measurement techniques all yield consistent results.
owever, these measurements often require a large number of

arefully controlled experiments and, in general, have no pre-
ictive capability (i.e., each new material must be handled on
case-by-case basis). As a consequence, analytical (for simple

ases) or numerical predictions of the permeability have for the
ast few years been the goal of many researchers in the field of
orous media flow.

The permeability prediction models are mainly of three types:

a) Fitting the experimental data to a pure empirical formula
with several empirical constants. These empirical constants
usually do not have any specific physical meaning, and the
constants gained by different people always differ in values,
therefore lacking of consistency. For example:

Lei et al. [2] studied the relation between porosity and
permeability of the grain bed, the empirical formula gotten
from the experiment data is

K = 1.72 × 104d1.465φ4.69 (1)

where d and φ are the grain diameter and porosity, respec-
tively, Eq. (1) is applied to the range of d = 0.1–0.45 mm.
There are three empirical constants: 1.72 × 104, 1.465 and
4.69, so it is obvious that they have no specific physical
meaning.

Adler and Thovert [3] presented several empirical for-
mulae for the permeability of real porous media, e.g. an
empirical formula for a glass particle porous media is

K = 0.117r2
eφ

4.57 (2)

where re is the equivalent radius of glass particle, Eq. (2) is
applied to the range from φ = 0.4 to φ = 0.79. There are also
several empirical constants in Eq. (2).

b) By specific ideal models and theoretical analysis, in which
the relation between permeability and different parameters
of the structures in the porous media can be derived, which
is semi-empirical approach. Some numerical coefficients of
these models must be confirmed by experiment for a specific
porous medium.

The famous Kozeny–Carman equation is a typical exam-
ple of semi-empirical formula, given by

K = φn+1

C(1 − φ)n
(3)

where the exponential n and constant C are called
Kozeny–Carman constants, these two constants vary for dif-
ferent porous media.

c) Pure theoretical formulas are derived from Darcy’s law.
They are only applied to an ideal structure (such as circi-
nal capillary, rectangle channel, etc.) porous media, but not
to the random and disorderly structure of real porous media.
In practical applications, hardly any porous media have an
deal structure. The transport character parameters of the porous

edia have been measured mainly by experiments or com-
uted by numerical simulation over several decades, so how
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o decrease or eliminate these empirical constants is the subject
hat people in this field still work on.

A large number of reports indicate that the microstructures
nd pore size distributions of porous media have a fractal char-
cteristic. Therefore, it is possible to obtain the permeability
f porous media through fractal analysis of the pore structures.
any people have made great efforts to study fractal theories

nd develop their application; so far they have already made
ome progress.

Tyler and Wheatcraft [4] combined porous capillary channel
odels with the Van Genuchten empirical formula, and got the

ractal model for the water content characteristic curve. Rieu and
posito [5] introduced theoretical models of pore distribution
ased on a Sierpinski-type gasket. Perfect et al. [6] improved
odels put forward by Tyler, Wheatcraft, and Rieu, Sposito,

nd they got the relation between the water content and the pore
ressure in porous media. Shepard [7] applied the Koch curve to
he simulation of soil’s pore distribution, and then got a hydraulic
onductivity formula in the form of an exponential.

Adler and Thovert [3] made a numerical simulation analy-
is of the transport problems of fractal objects with geometrical
eep models in early times. But the results did not have any
onnection with the fractal dimension, nor were they compared
ith experimental data. They were only connected with geo-
etrical iterative times. Adler studied the transport character

n porous media later, and considered that the permeability of
orous media could be expressed as follows: K = K(φ, Df, . . .),
here Df is the fractal dimension. But the quantitative expres-

ion of permeability was not given in this paper.
Chen and Shi [8] raised a fractal permeability model of

porous soil media, and this model has four empirical con-
tants. The area fractal dimension of the soil pore distribution
eported in their paper is that Df < 1. But according to basic frac-
al theories, 1 < Df < 2 in two-dimensional space and 2 < Df < 3
n three-dimensional space, so their results about the area frac-
al dimension is doubtful. Another shortcoming of their work
s that they did not compare theoretical models to experimental
esults, so the validity of the models needs to be confirmed fur-
her. In their recent work, they improved the computation of the
ractal dimension and got the fractal dimension Df between 1
nd 2, at the same time, the empirical constants decreased from
to 2.
Pitchumani and Ramakrishnan [9] presented a fractal analyt-

cal model for evaluating the permeability of a porous fibrous
extile. This model has not any empirical constants, which is a
reat improvement, but their model is incorrect for disobeying
he basic fractal theories.

Yu and Lee [10] deduced a general analytical solution model
or a kind of porous fibrous textile

= agHg
Hg/12 + √

k⊥/2

A
(4)

here αg, Hg, A and k⊥ are biggest pore area, pore height,

nit area and transverse permeability of fasciculi, respectively.
lthough Eq. (4) has no empirical constants, it is not applicable

o porous media with random and irregular structures in which
ow cannot be simplified into one-dimensional Stokesian flows.
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ε
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n their subsequent research work, a universal fractal analytical
olution model of permeability for porous media was derived
ased on the Hagen–Poiseulle equation and Darcy’s law. Their
esearch objectives are particle porous media, such as grit and
oil, so their model does not apply to the GDL of a PEMFC that
s a fibrous and microporous medium.

In the following sections, we will first introduce the basic
ractal characteristic analytical theories of the GDL in a PEMFC.
hen the analytical solution model of permeability will be
erived based on experiment research. Finally we will assess
he validity of the models.

. Fractal permeability model for GDL of PEMFC

We will introduce some basic concepts of the fractal theory
rst.

Scale relationship between the measurement of a fractal
bject M(L) and the metrical yardstick L is as follows [11]:

(L) ∼ LDf (5)

here Df is the fractal dimension, M(L) the quality, or volume,
r area of the object or the curvilinear length and L is the scale.

Another character of the fractal object (such as pore, or
slands in the Earth) is that the cumulative number N (for exam-
le, the number of pore) of the fractal object and pore size
istribution are related by the equation [11]

(L ≥ λ) =
(

λmax

λ

)Df

(6)

here λ and λmax are the pore size and the maximum pore size,
espectively, as far as porous media are concerned. The first
erivative of Eq. (6) with respect to λ can be written as

dN = Dfλ
Df
maxλ

−(Df+1) dλ (7)

he number of pores whose sizes fall within the infinitesimal
ange λ to λ + dλ is given by Eq. (7), and −dN > 0.

When liquids flow through the pores of porous medium, the
apillaries may be tortuous. These tortuous capillaries could be
xpressed by fractal equation [12]

t(λ) = LDT
0 λ1−DT (8)

here DT is the tortuosity fractal dimension, and lies in the
ange 1 < DT < 2, which represents the extent of convolutedness
f capillary pathways for fluid flow through a medium. Note that
or a straight capillary path DT = 1, and a higher value of DT
orresponds to a highly tortuous capillary. The limiting case of
T = 2 corresponds to a highly tortuous line that fills a plane. Let

he diameter of a capillary in the medium be λ and its tortuous
ength along the flow direction be Lt(λ). L0 is representative
ength of channels. For a straight capillary, Lt(λ) = L0.

In early research, we made mercury porosimetry and BET

bsorption experiments for the GDL and from the experimental
ata of mercury-intrusion porosimetry, two fractal dimensions
ere computed. The calculated results showed that linear regres-

ion of the experimental data is obvious and GDL has a fractal
urces 160 (2006) 277–283 279

haracter, so fractal theories are effective in the analysis and
valuation of the pore distribution characteristic of the GDL.

In simulation of a PEMFC, the gas permeability diffusion in
GDL needs to be taken into account. According to the exper-

mental data from mercury porosimetry, it can be seen that the
ore diameters of the GDL range from 10−5 to 10−8 m, and
ost pore diameters are about 10−6 m. However, the mean free

ath of a gas molecule is about 10−7 m; thus, the Knudsen num-
er ranges from about 10−2 to 10, so the slipstream of the gas
olecule should be considered. The flow rate q(λ) through a

ingle tortuous capillary can be given by the Adzumi equation
13]

(λ) = π

128

�p

Lt(λ)

λ4

µ
+ ε

6

√
2πRT

M

λ3

Lt(λ)

�p

p
(9)

here µ is the viscosity of the fluid, �p the pressure gradient
nd ε is the Adzumi constant which is a non-dimensional pro-
ortional fraction, it takes a value of 0.9 for one kind of gas and
value of 0.66 for a gaseous mixture. M is the gas molecular
eight, and the gas constant R is 8.3143 J mol−1 K−1.
Eqs. (6)–(9) form the basis of the present fractal permeability

odel for the GDL of a PEMFC, which we will derive as follows.
The total flow rate Q can be obtained by integrating the indi-

idual flow rate q(λ) over the entire range of pore sizes from the
inimum pore λmin to the maximum pore λmax in a unit cell.
ccording to Eqs. (7) and (9), we have

= −
∫ λmax

λmin

q(λ) dN(λ) =
∫ λmax

λmin

(
π

128

�p

Lt(λ)

λ4

µ

+ ε

6

√
2πRT

M

λ3

Lt(λ)

�p

p

)
Dfλ

Df
maxλ

−(Df+1) dλ (10)

ubstituting the definitions of Lt(λ) into Eq. (10), we can get

=
∫ λmax

λmin

(
π �pDfλ

Df
max

128µLDT
0

λ2+DT−Df

+ ε

6

√
2πRT

M

�p

p

Dfλ
Df
max

LDT
0

λ1+DT−Df

)
dλ

= π �pDfλ
Df
max

128µLDT
0

1

3 + DT − Df
λ3+DT−Df

∣∣∣∣
λmax

λmin

+ ε

6

√
2πRT

M

�p

p

Dfλ
Df
max

LDT
0

1

2 + DT − Df
λ2+DT−Df

∣∣∣∣
λmax

λmin
× 1 −
λmax

+
6 M p LDT

0

× 1

2 + DT − Df
λ2+DT−Df

max

[
1 −

(
λmin

λmax

)2+DT−Df
]

(11)
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Using the Darcy’s laws, the permeability of GDL could be
ritten as

= µL0Q

�pA
= π

128

L1−DT
0

A

Df

3 + DT − Df
λ3+DT

max

×
[

1 −
(

λmin

λmax

)3+DT−Df
]

+ ε

6

√
2πRT

M

µ

A

L1−DT
0

p

× Df

2 + DT − Df
λ2+DT

max

[
1 −

(
λmin

λmax

)2+DT−Df
]

(12)

Let the first item of Eq. (12) be K1, the second item K2, then
q. (12) becomes

= K1 + K2 (13)

In the two-dimensional space, due to 1 < DT < 2 and
< Df < 2, the exponents of λmin/λmax, 3 + DT − Df > 1 and
+ DT − Df > 1, respectively, and becauseλmin/λmax < 10−2, Eq.

12) could be reduced to

= µL0Q

�pA
= π

128

L1−DT
0

A

Df

3 + DT − Df
λ3+DT

max

+ ε

6

√
2πRT

M

µ

A

L1−DT
0

p

Df

2 + DT − Df
λ2+DT

max (14)

hus, K1 can be gained by

1 = π

128

L1−DT
0

A

Df

3 + DT − Df
λ3+DT

max (15)

According to Eq. (11), the corresponding total flow rate Q1
an be written as

1 = π �pDf

128µLDT
0

1

3 + DT − Df
λ3+DT

max (16)

Eq. (15) indicates that the permeability K1 is a function of
he pore area fractal dimension Df, the tortuosity fractal dimen-
ion DT and structural parameters A, L0 and λmax. If a straight
apillary model (DT = 1) is assumed, Eqs. (15) and (16) can be
educed to

1 = π �p

128µL0

Df

4 − Df
λ4

max (17)

1 = π

128

1

A

Df

4 − Df
λ4

max (18)

espectively. Eqs. (17) and (18) indicate that the flow rate Q1
nd permeability K1 are very sensitive to the maximum pore
ize λmax. It is also shown that a higher value of Df corresponds
o higher flow rate and higher permeability values. From Eqs.
17) and (18), we can see that the flow rate and the permeability
ill reach the possible maximum values as the pore area fractal
imension approaches its possible maximum value of 2. The
imiting case of Df = 2 corresponds to a smooth surface or a
lane or a compact cluster. This means that if we consider the

mooth surface, compact cluster, circle or square to be the cross-
ection of a pore, the fractal dimension of the cross-section is
and the pore volume fraction of the cross-section is 1. Both

he flow rate and the permeability are a maximum under such
urces 160 (2006) 277–283

onditions. Thus, for flow through the unit cell with a single
apillary tube or pore with Df = 2, we have the maximum flow
ate and maximum permeability from Eqs. (17) and (18),

1 max = π �p

128µL0
λ4

max = D2
e

32

A �p

L0µ
(19)

1 max = π

128

1

A
λ4

max = D2
e

32
(20)

q. (19) is exactly the Hagen–Poiseulle equation [13], and the
ermeability value of D2

e/32 is exactly the expression for flow
hrough a pipe.

K2 in Eq. (13) is the modified item when the Knudsen effect
s taken into account, so the effect of K2 on the total permeability
s not very large, while the first item K1 plays an important role
n permeability computation. From Eqs. (19) and (20), it can
e seen that our model is consistent with the physical situation.
herefore, one can find the flow rate and the permeability for
ow through the unit cell with a straight capillary tube either
rom the modified Hagen–Poiseulle equation or from Eqs. (19)
nd (20) without consideration of the Knudsen effect.

As mentioned above, we can see that in Eq. (14), K1 is the
ermeability expression that can be derived from the modified
agen–Poiseulle equation and K2 is the modified item caused
y the molecule slipstream.

Subsequently the expression of the total area of the unit cell
will be derived by the definition of porosity as follows:

p = −
∫ max

min

1

4
πλ2 dN(λ) =

∫ λmax

λmin

1

4
πλ2Dfλ

Df
maxλ

−(Df+1) dλ

= 1

4
πDfλ

Df
max

1

2 − Df
λ2−Df

∣∣∣∣
λmax

λmin

= πDf

4(2 − Df)
λ2

max

[
1 −

(
λmin

λmax

)2−Df
]

(21)

here Ap is the pore area of the unit cell.
According to the definition of porosity, we get

= Ap

A
⇒ A = Ap

φ
= πDfλ

2
max

4φ(2 − Df)

[
1 −

(
λmin

λmax

)2−Df
]

(22)

here φ is the porosity.
Substituting Eq. (22) into Eq. (12), we have

= 1 2 − Df L1−DT
0 λ1+DT

max φ
2−Df
+
3 πM

0

p 2 + DT − Df

max

[1 − (λmin/λmax)2−Df ]

×
[

1 −
(

λmin

λmax

)2+DT−Df
]

(23)
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Table 1
The microstructual parameters and operating parameters of samples

Parameter Number one Number two Description

λmax 8 × 10−5 m 7 × 10−5 m Maximum pore
diameter

λmin 3.079 × 10−8 m 1.487 × 10−8 m Minimum pore
diameter

φ 0.55 0.78 Porosity
L0 1.9 × 10−4 m 1.9 × 10−4 m Gas diffusion layer

thickness
µ 1.2 × 10−5 Pa s 1.2 × 10−5 Pa s Hydrogen viscosity
p
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equation. Moreover, we forecasted the permeability of TGP-H-
060 carbon paper treated with PTFE by our fractal model and
Kozeny–Carman equation, respectively, also shown in Fig. 1.
Y. Shi et al. / Journal of Pow

In the two-dimensional space, Eq. (23) can be abbreviated to

= 1

32

2 − Df

3 + DT − Df

L1−DT
0 λ1+DT

max φ

[1 − (λmin/λmax)2−Df ]

+ ε

3

√
2RT

πM

µL1−DT
0

p

(4 − 2Df)φ

2 + DT − Df

λDT
max

[1 − (λmin/λmax)2−Df ]
(24)

Eqs. (23) and (24) without empirical constants are the ana-
ytical solution model of permeability for GDL. It can be seen
hat the permeability K is a function of two fractal dimensions

f, DT and porous material microstructure parameters. Eqs.
23) and (24) all have 11 parameters, and every parameter has
pecific physical meaning. So the permeability model gained
y the fractal theories is obviously better than the well-known
onzeny–Carman equation from the viewpoint of describing a
enetrative mechanism.

According to the following formula proved recently by Yu
nd Li [14]:

=
(

λmin

λmax

)dE−Df

(25)

here dE is Euclid dimension, and dE = 2, 1 < Df < 2 in the two
imensional space; while dE = 3, 2 < Df < 3 in the three dimen-
ion space. Eq. (24) can be further abbreviated to

= 1

32

2 − Df

3 + DT − Df

L1−DT
0 λ1+DT

max φ

1 − φ

+ ε

3

√
2RT

πM

µL1−DT
0

p

(4 − 2Df)φ

2 + DT − Df

λDT
max

1 − φ
(26)

In the following section, we will discuss the determination
f two fractal dimensions Df and DT and fractal permeability
rediction of GDL.

. Two fractal dimensions evaluation and permeability
rediction for the GDL

In the fractal analytical solution model of permeability, we
eed to determine two dimensions: the tortuosity fractal dimen-
ion DT, which can be obtained using a box-counting method,
nd the pore area fractal dimension Df.

The pore area fractal dimension can be determined by sev-
ral methods, which can be roughly sorted into three types.
aking linear regression of the experimental data to gain the
ractal dimension is the first method. Such experiments include
ercury porosimetry and BET absorption. Processing the SEM

mages or the images from other imaging technology to compute
he fractal dimension belongs to the second method. The most
ommon method based on images is the box-counting method;
urthermore, a difference box-counting method and a Sierpinski-
ype gasket or basket method can also be used. The method by
nalytical solution of the fractal dimension belongs to the third

pproach.

Using a box-counting method to process the SEM images of
wo samples: TGP-H-060 carbon paper and TGP-H-060 carbon
aper treated with PTFE, we get the tortuosity dimension of two

F
K

1.01325 × 105 Pa 1.01325 × 105 Pa Hydrogen pressure
353 K 353 K Temperature

amples DT = 1.1447, the pore area dimension of TGP-H-060
arbon paper Df = 1.9669 and that of TGP-H-060 carbon paper
reated with PTFE Df = 1.9276.

As follows, the prediction of permeability will be made when
2 goes through two samples (number one sample is TGP-H-
60 carbon paper and number two sample is TGP-H-060 carbon
aper treated with PTFE). Table 1 gives the operating parameters
nd some experimental data from mercury porosimetry.

We now compare the permeability values based on the present
ractal model with the reference value supplied by Toray Inc. for
he number one sample. The results are presented in Fig. 1.

The real line in Fig. 1 shows that the fractal permeability
odel for the number one sample is slightly lower than the refer-

nce value, that is, 8 × 10−8 m2. In the same figure, we also plot
he well-known Kozeny–Carman equation given by Eq. (3), in
hich C = 180/λ2

mean, φ = 0.78, the mean pore diameter λmean
s computed by experimental data from mercury porosimetry. It
s shown that the present fractal permeability model is in better
greement with the reference value than the Kozeny–Carman
ig. 1. A comparison of permeability from the present fractal model and
ozeny–Carman equation.
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Fig. 2. Effect of Df and DT on permeability for carbon paper.

rom the results, it can be seen that because the porosity of
arbon paper descends and the pore space decreases after being
reated by PTFE, the corresponding permeability decreases with
espect to that of carbon paper without treatment.

The effects of the pore area dimension Df, the tortuosity
imension DT and porosity φ on the permeability are plotted
n Figs. 2 and 3. Fig. 2 shows the permeability variation with
he pore area dimension Df for different values of the tortuosity
imension DT. It is seen that the permeability increases as Df
ncreases. Increase in Df corresponds to increase in the number
f the larger pores, and decrease in the population of the smaller
ores within a representative carbon paper volume. The result-
ng augmentation in the available area for gas flow in turn leads

o an increase in the permeability.

An interesting fact can be elucidated from Fig. 2 which is
hat for any tortuosity dimension, as the pore area dimension

f approaches its largest possible value of 2, the permeabil-

ig. 3. Effect of DT and effective porosity on permeability for carbon paper.
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ty approaches maximum possible values as mentioned above.
his theoretical limit on Df corresponds to the situation wherein

he carbon paper entirely consists of pores and does not con-
ain any solid matrix. Under such a condition, the flow-through
orous medium whose porosity approaches unity becomes the
ow through a zone. Moreover, when the pore area dimension
f approaches its lowest possible value of 1, the permeability

pproaches minimum possible values. Its theoretical limit on Df
orresponds to the situation wherein the carbon paper consists
f pores of sizes approaching zero, which no longer contributes
o the gas flow.

The variation of the permeability with porosity φ and the tor-
uosity dimension DT is presented in Fig. 3. The permeability is
een to decrease with increasing the tortuosity dimension. The
ecrease in permeability with the increase in DT is attributed to
he increased flow resistance due to the highly convoluted cap-
llary pathways. Furthermore, the permeability increases with
ising porosity in the carbon paper owing to increase in the avail-
ble pore volume for the gas to permeate through, which is also
bserved in Fig. 2.

The effect of K2 on the total permeability is also studied with
he ratio of K2 to the total permeability K. The results show that
he ratios lie in the range from 0.29 to 0.34% for carbon paper
nd from 0.33 to 0.38% for carbon paper treated with PTFE.
he values of K2/K are so small that we can ignore K2 in the
ermeability computation, which indicates little reaction of the
nudsen effect to the flow through carbon paper, so the modified

tems of Eqs. (23), (24) and (26) need not be taken into account
n permeation through carbon paper. In addition, the ratios of K2
o the total permeability K of the number two sample are greater
han that of the number one sample for the mean pore size of the
umber two sample is smaller than that of number one.

. Conclusion

In this paper, the relationship between the microstructure and
he permeability of the GDL in a PEMFC was given. With
he microstructural parameters including two fractal dimen-
ions of porous medium, the smallest and biggest pore diameter
nd porosity we could predict the corresponding permeability
hrough fractal models. The analytical solution permeability

odel of the GDL does not have any empirical constants, and
very parameter in this model has a specific physical meaning.
o the permeability model gained by fractal theory is obvi-
usly better than the well-known Konzeny–Carman equation
rom the viewpoint of describing a penetrative mechanism. The
rediction results show that the present fractal permeability
odel is in better agreement with the reference value than the
ozeny–Carman equation.

The effects of the area dimension Df, the tortuosity dimension
T and porosity φ on the permeability are discussed in detail.
nd we can draw the conclusion that permeability increases as
f or φ increases, or as DT decreases.

Therefore, using fractal geometrical theories to study the pore

tructures of the GDL in a PEMFC provides a new research
ethod for the gas transport mechanism in the simulation of
EMFCs. It makes quantitative analysis of the relationship



er So

b
p

A

t
D
(

R

[
[

Y. Shi et al. / Journal of Pow

etween the micro-mechanism and the macroscopical material
arameters of a GDL possible.

cknowledgment

The authors acknowledge the financial support of
he Special Scientific Research Foundation for College
octor Subjects from Ministry of Education of China

No. 20030497012 and No. 20050497014).
eferences

[1] A.H. Thompson, A.J. Katz, C.E. Krohn, Adv. Phys. 36 (5) (1987) 625.
[2] S.Y. Lei, L.Q. Wang, L.Q. Jia, C.M. Xia, J. Tsinghua Univ. 38 (5) (1998)

20.

[
[

[

urces 160 (2006) 277–283 283

[3] P.M. Adler, J.F. Thovert, Appl. Mech. Rev. 51 (9) (1998) 537.
[4] S.W. Tyler, S.W. Wheatcraft, Water Resour. Res. 26 (1990) 1047.
[5] M. Rieu, G. Sposito, Soil Sci. Soc. Am. J. 55 (1991) 1231.
[6] E. Perfect, N.B. Mclaughlin, B.D. Kay, G.C. Topp, Water Resour. Res. 32

(2) (1996) 281.
[7] S.J. Shepard, Soil Sci. Soc. Am. J. 57 (1993) 300.
[8] Y.P. Chen, M.H. Shi, J. Tsinghua Univ. 40 (12) (2001) 94.
[9] R. Pitchumani, B. Ramakrishnan, Int. J. Heat Mass Transfer 42 (1999)

2219.
10] B.M. Yu, L.J. Lee, Polym. Compos. 21 (5) (2000) 660.
11] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Fran-

cisco, USA, 1982.

12] S.W. Wheatcraft, S.W. Tyler, Water Resour. Res. 24 (1988) 566.
13] D.E. Xue, H.X. Wang, C.S. Zhang, S.S. Xun, Permeation Physics

in Porous Media, Petroleum Industry Publishing Company, Beijing,
1982.

14] B.M. Yu, J.H. Li, Fractals 9 (3) (2001) 365.


	A fractal permeability model for the gas diffusion layer of PEM fuel cells
	Introduction
	Research methods and fractal research of permeability
	Fractal permeability model for GDL of PEMFC
	Two fractal dimensions evaluation and permeability prediction for the GDL
	Conclusion
	Acknowledgment
	References


